Определение линейной функции

Введем определение линейной функции

Определение

Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

Рассмотрим рисунок 1.

Рис. 1. Геометрический смысл углового коэффициента прямой

Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

\ \

Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

С другой стороны $\frac{BC}{AC}=tg\angle A$.

Таким образом, можно сделать следующий вывод:

Вывод

Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

Исследование линейной функции $f\left(x\right)=kx+b$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 2).

Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
  4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

  1. $f"\left(x\right)={\left(kx\right)}"=k
  2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  4. График (рис. 3).

Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел. Здесь k – угловой коэффициент (действительное число), b свободный член (действительное число), x – независимая переменная.

В частном случае, если k = 0 , получим постоянную функцию y = b , график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b) .

Если b = 0 , то получим функцию y = kx , которая является прямой пропорциональностью.

b длина отрезка , который отсекает прямая по оси Oy, считая от начала координат.

Геометрический смысл коэффициента k угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0 , то область значений линейной функции есть вся вещественная ось. Если k = 0 , то область значений линейной функции состоит из числа b ;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b .

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox: y = kx + b = 0, x = -b/k , следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy: y = 0k + b = b , следовательно (0; b) – точка пересечения с осью ординат.

Замечание.Если b = 0 и k = 0 , то функция y = 0 обращается в ноль при любом значении переменной х . Если b ≠ 0 и k = 0 , то функция y = b не обращается в ноль ни при каких значениях переменной х .

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x из (-b/k; +∞) ,

y = kx + b – отрицательна при x из (-∞; -b/k) .

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x из (-∞; -b/k) ,

y = kx + b – отрицательна при x из (-b/k; +∞) .

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k .

k > 0 , следовательно y = kx + b возрастает на всей области определения,

k < 0 , следовательно y = kx + b убывает на всей области определения.

8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b . Ниже приведена таблица, которая наглядно это иллюстрирует.

С чем и связано её название. Это касается вещественной функции одной вещественной переменной.

Энциклопедичный YouTube

  • 1 / 5

    Если все переменные x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\dots ,x_{n}} и коэффициенты a 0 , a 1 , a 2 , … , a n {\displaystyle a_{0},a_{1},a_{2},\dots ,a_{n}} - вещественные числа, то графиком линейной функции в (n + 1) {\displaystyle (n+1)} -мерном пространстве переменных x 1 , x 2 , … , x n , y {\displaystyle x_{1},x_{2},\dots ,x_{n},y} является n {\displaystyle n} -мерная гиперплоскость

    y = a 0 + a 1 x 1 + a 2 x 2 + ⋯ + a n x n {\displaystyle y=a_{0}+a_{1}x_{1}+a_{2}x_{2}+\dots +a_{n}x_{n}}

    в частности при n = 1 {\displaystyle n=1} - прямая линия на плоскости.

    Абстрактная алгебра

    Термин «линейная функция», или, точнее, «линейная однородная функция», часто применяется для линейного отображения векторного пространства X {\displaystyle X} над некоторым полем k {\displaystyle k} в это поле, то есть для такого отображения f: X → k {\displaystyle f:X\to k} , что для любых элементов x , y ∈ X {\displaystyle x,y\in X} и любых α , β ∈ k {\displaystyle \alpha ,\beta \in k} справедливо равенство

    f (α x + β y) = α f (x) + β f (y) {\displaystyle f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)}

    причём в этом случае вместо термина «линейная функция» используются также термины линейный функционал и линейная форма - также означающие линейную однородную функцию определённого класса.

    Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
    Графиком линейной функции является прямая.

    1. Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

    Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:

    2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
    если k>0, то функция y=kx+b возрастает
    если k
    Коэффициент b показывает смещение графика функции вдоль оси OY:
    если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
    если b
    На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3

    Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.

    Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)

    Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3

    На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

    Рассмотрим графики функций y=2x+3; y=2x; y=2x-3

    Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.

    Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
    График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
    График функции y=2x (b=0) пересекает ось OY в точке (0;0) - начале координат.
    График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)

    Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
    Если k 0

    Если k>0 и b>0 , то график функции y=kx+b имеет вид:

    Если k>0 и b , то график функции y=kx+b имеет вид:

    Если k, то график функции y=kx+b имеет вид:

    Если k=0 , то функция y=kx+b превращается в функцию y=b и ее график имеет вид:

    Ординаты всех точек графика функции y=b равны b Если b=0 , то график функции y=kx (прямая пропорциональность) проходит через начало координат:

    3. Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

    Например, график уравнения x=3 выглядит так:
    Внимание! Уравнение x=a не является функцией, так одному значению аргумента соотвутствуют разные значения функции, что не соответствует определению функции.


    4. Условие параллельности двух прямых:

    График функции y=k 1 x+b 1 параллелен графику функции y=k 2 x+b 2 , если k 1 =k 2

    5. Условие перепендикулярности двух прямых:

    График функции y=k 1 x+b 1 перепендикулярен графику функции y=k 2 x+b 2 , если k 1 *k 2 =-1 или k 1 =-1/k 2

    6. Точки пересечения графика функции y=kx+b с осями координат.

    С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

    С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

    >>Математика: Линейная функция и ее график

    Линейная функция и ее график


    Алгоритм построения графика уравнения ах + by + с = 0, который мы сформулировали в § 28, при всей его четкости и определенности математикам не очень нравится. Обычно они выдвигают претензии к первым двум шагам алгоритма. Зачем, говорят они, дважды решать уравнение относительно переменной у: сначала ах1 + Ьу + с = О, затем ахг + Ьу + с = О? Не лучше ли сразу выразить у из уравнения ах + by + с = 0, тогда легче будет проводить вычисления (и, главное, быстрее)? Давайте проверим. Рассмотрим сначала уравнение 3x - 2у + 6 = 0 (см. пример 2 из § 28).

    Придавая х конкретные значения, легко вычислить соответствующие значения у. Например, при х = 0 получаем у = 3; при х = -2 имеем у = 0; при х = 2 имеем у = 6; при х = 4 получаем: у = 9.

    Видите, как легко и быстро найдены точки (0; 3), (- 2; 0), (2; 6) и (4; 9), которые были выделены в примере 2 из § 28.

    Точно так же уравнение Ьх - 2у = 0 (см. пример 4 из § 28) можно было преобразовать к виду 2у =16 -3x . далее у = 2,5x; нетрудно найти точки (0; 0) и (2; 5), удовлетворяющие этому уравнению.

    Наконец, уравнение 3x + 2у - 16 = 0 из того же примера можно преобразовать к виду 2y = 16 -3x и далее нетрудно найти точки (0; 0) и (2; 5), которые ему удовлетворяют.

    Рассмотрим теперь указанные преобразования в общем виде.


    Таким образом, линейное уравнение (1) с двумя переменными х и у всегда можно преобразовать к виду
    y = kx + m,(2) где k,m - числа (коэффициенты), причем .

    Этот частный вид линейного уравнения будем называть линейной функцией.

    С помощью равенства (2) легко, указав конкретное значение х, вычислить соответствующее значение у. Пусть, например,

    у = 2х + 3. Тогда:
    если х = 0, то у = 3;
    если х = 1, то у = 5;
    если х = -1, то у = 1;
    если х = 3, то у = 9 и т. д.

    Обычно эти результаты оформляют в виде таблицы :

    Значения у из второй строки таблицы называют значениями линейной функции у = 2х + 3, соответственно, в точках х = 0, х = 1, х = -1,х=-3.

    В уравнении (1) переменные хну равноправны, а в уравнении (2) - нет: конкретные значения мы придаем одной из них - переменной х, тогда как значение переменной у зависит от выбранного значения переменной х. Поэтому обычно говорят, что х - независимая переменная (или аргумент), у - зависимая переменная.

    Обратите внимание: линейная функция - это специальный вид линейного уравнения с двумя переменными. Графиком уравнения у - kx + т, как всякого линейного уравнения с двумя переменными, является прямая - ее называют также графком линейной функции y = kx + тп. Таким образом, справедлива следующая теорема.


    Пример 1. Построить график линейной функции у = 2х + 3.

    Решение. Составим таблицу:

    Во второй ситуации независимая переменная х, обозначающая, как и в первой ситуации, число дней, может принимать только значения 1, 2, 3, ..., 16. Действительно, если х = 16, то по формуле у = 500 - З0x находим: у = 500 - 30 16 = 20. Значит, уже на 17-й день вывезти со склада 30 т угля не удастся, поскольку на складе к этому дню останется всего 20 т и процесс вывоза угля придется прекратить. Следовательно, уточненная математическая модель второй ситуации выглядит так:

    у = 500 - ЗОд:, где х = 1, 2, 3, .... 16.

    В третьей ситуации независимая переменная х теоретически может принять любое неотрицательное значение (напр., значение х = 0, значение х = 2, значение х = 3,5 и т. д.), но практически турист не может шагать с постоянной скоростью без сна и отдыха сколько угодно времени. Значит, нам нужно было сделать разумные ограничения на х, скажем, 0 < х < 6 (т. е. турист идет не более 6 ч).

    Напомним, что геометрической моделью нестрогого двойного неравенства 0 < х < 6 служит отрезок (рис. 37). Значит, уточненная модель третьей ситуации выглядит так: у = 15 + 4х, где х принадлежит отрезку .

    Условимся вместо фразы «х принадлежит множеству X» писать (читают: «элемент х принадлежит множеству X», е - знак принадлежности). Как видите, наше знакомство с математическим языком постоянно продолжается.

    Если линейную функцию у = kx + m надо рассматривать не при всех значениях х, а лишь для значений х из некоторого числового промежутка X, то пишут:

    Пример 2. Построить график линейной функции:

    Решение, а) Составим таблицу для линейной функции y = 2x + 1

    Построим на координатной плоскости хОу точки (-3; 7) и (2; -3) и проведем через них прямую линию. Это - график уравнения у = -2x: + 1. Далее, выделим отрезок, соединяющий построенные точки (рис. 38). Этот отрезок и есть график линейной функции у = -2х+1, гдехе [-3, 2].

    Обычно говорят так: мы построили график линейной функции у = - 2х + 1 на отрезке [- 3, 2].

    б) Чем отличается этот пример от предыдущего? Линейная функция та же (у = -2х + 1), значит, и ее графиком служит та же прямая. Но - будьте внимательны! - на этот раз х е (-3, 2), т. е. значения х = -3 и х = 2 не рассматриваются, они не принадлежат интервалу (- 3, 2). Как мы отмечали концы интервала на координатной прямой? Светлыми кружочками (рис. 39), об этом мы говорили в § 26. Точно так же и точки (- 3; 7) и B; - 3) придется отметить на чертеже светлыми кружочками. Это будет напоминать нам о том, что берутся лишь те точки прямой у = - 2х + 1, которые лежат между точками, отмеченными кружочками (рис. 40). Впрочем, иногда в таких случаях используют не светлые кружочки, а стрелки (рис. 41). Это непринципиально, главное, понимать, о чем идет речь.


    Пример 3. Найти наибольшее и наименьшее значения линейной функции на отрезке .
    Решение. Составим таблицу для линейной функции

    Построим на координатной плоскости хОу точки (0; 4) и (6; 7) и проведем через них прямую - график линейной х функции (рис. 42).

    Нам нужно рассмотреть эту линейную функцию не целиком, а на отрезке , т. е. для х е .

    Соответствующий отрезок графика выделен на чертеже. Замечаем, что самая большая ордината у точек, принадлежащих выделенной части, равна 7 - это и есть наибольшее значение линейной функции на отрезке . Обычно используют такую запись: у наиб =7.

    Отмечаем, что самая маленькая ордината у точек, принадлежащих выделенной на рисунке 42 части прямой, равна 4 - это и есть наименьшее значение линейной функции на отрезке .
    Обычно используют такую запись: y наим. = 4.

    Пример 4. Найти у наиб и y наим. для линейной функции y = -1,5x + 3,5

    а) на отрезке ; б) на интервале (1,5);
    в) на полуинтервале .

    Решение. Составим таблицу для линейной функции у = -l,5x + 3,5:

    Построим на координатной плоскости хОу точки (1; 2) и (5; - 4) и проведем через них прямую (рис. 43-47). Выделим на построенной прямой часть, соответствующую значениям х из отрезка (рис. 43), из интервала A, 5) (рис. 44), из полуинтервала (рис. 47).

    а) С помощью рисунка 43 нетрудно сделать вывод, что у наиб = 2 (этого значения линейная функция достигает при х = 1), а у наим. = - 4 (этого значения линейная функция достигает при х = 5).

    б) Используя рисунок 44, делаем вывод: ни наибольшего, ни наименьшего значений на заданном интервале у данной линейной функции нет. Почему? Дело в том, что, в отличие от предыдущего случая, оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, из рассмотрения исключены.

    в) С помощью рисунка 45 заключаем, что y наиб. = 2 (как и в первом случае), а наименьшего значения у линейной функции нет (как и во втором случае).

    г) Используя рисунок 46, делаем вывод: у наиб = 3,5 (этого значения линейная функция достигает при х = 0), а у наим. не существует.

    д) С помощью рисунка 47 делаем вывод: y наим = -1 (этого значения линейная функция достигает при х = 3), а у наиб., не существует.

    Пример 5. Построить график линейной функции

    у = 2х - 6. С помощью графика ответить на следующие вопросы:

    а) при каком значении х будет у = 0?
    б) при каких значениях х будет у > 0?
    в) при каких значениях х будет у < 0?

    Ре ш е ни е. Составим таблицу для линейной функции у = 2х- 6:

    Через точки (0; - 6) и (3; 0) проведем прямую - график функции у = 2х - 6 (рис. 48).

    а) у = 0 при х = 3. График пересекает ось х в точке х = 3, это и есть точка с ординатой у = 0.
    б) у > 0 при х > 3. В самом деле если х > 3, то прямая расположена выше оси ж, значит, ординаты соответствующих точек прямой положительны.

    в) у < 0 при х < 3. В самом деле если х < 3, то прямая расположена ниже оси х, значит, ординаты соответствующих точек прямой отрицательны. A

    Обратите внимание, что в этом примере мы с помощью графика решили:

    а) уравнение 2х - 6 = 0 (получили х = 3);
    б) неравенство 2х - 6 > 0 (получили х > 3);
    в) неравенство 2x - 6 < 0 (получили х < 3).

    Замечание. В русском языке часто один и тот же объект называют по-разному, например: «дом», «здание», «сооружение», «коттедж», «особняк», «барак», «хибара», «избушка». В математическом языке ситуация примерно та же. Скажем, равенство с двумя переменными у = кх + m, где к, m - конкретные числа, можно назвать линейной функцией, можно назвать линейным уравнением с двумя переменными х и у (или с двумя неизвестными х и у), можно назвать формулой, можно назвать соотношением, связывающим х и у, можно, наконец, назвать зависимостью между х и у. Это неважно, главное, понимать, что во всех случаях речь идет о математической модели у = кх + m

    .

    Рассмотрим график линейной функции, изображенный на рисунке 49, а. Если двигаться по этому графику слева направо, то ординаты точек графика все время увеличиваются, мы как бы «поднимаемся в горку». В таких случаях математики употребляют термин возрастание и говорят так: если k>0, то линейная функция у = kx + m возрастает.

    Рассмотрим график линейной функции, изображенный на рисунке 49, б. Если двигаться по этому графику слева направо, то ординаты точек графика все время уменьшаются, мы как бы «спускаемся с горки». В таких случаях математики употребляют термин убывание и говорят так: если k < О, то линейная функция у = kx + m убывает.

    Линейная функция в жизни

    А теперь давайте подведем итог этой темы. Мы с вами уже познакомились с таким понятие, как линейная функция, знаем ее свойства и научились строить графики. Так же, вы рассматривали частные случаи линейной функции и узнали от чего зависит взаимное расположение графиков линейных функций. Но, оказывается, в нашей повседневной жизни мы также постоянно пересекаемся с этой математической моделью.

    Давайте мы с вами подумаем, какие реальные жизненные ситуации связаны с таким понятием, как линейные функции? А также, между какими величинами или жизненными ситуациями, возможно, устанавливать линейную зависимость?

    Многие из вас, наверное, не совсем представляют, зачем им нужно изучать линейные функции, ведь это вряд ли пригодится в дальнейшей жизни. Но здесь вы глубоко ошибаетесь, потому что с функциями мы сталкиваемся постоянно и повсюду. Так как, даже обычная ежемесячная квартплата также является функцией, которая зависит от многих переменных. А к этим переменным относится метраж площади, количество жильцов, тарифов, использование электроэнергии и т.д.

    Конечно же, самыми распространенными примерами функций линейной зависимости, с которыми мы с вами сталкивались – это уроки математики.

    Мы с вами решали задачи, где находили расстояния, которые проезжали машины, поезда или проходили пешеходы при определенной скорости движения. Это и есть линейные функции времени движения. Но ведь эти примеры применимы не только в математике, они присутствуют в нашей повседневной жизни.

    Калорийности молочных продуктов зависит жирности, а такая зависимость, как правило, является линейной функцией. Так, например, при увеличении сметане процента жирности, увеличивается и калорийность продукта.



    Теперь давайте сделаем подсчеты и найдем значения k и b, решив систему уравнений:


    Теперь давайте выведем формулу зависимости:

    В итоге мы получили линейную зависимость.

    Чтобы знать скорость распространения звука в зависимости от температуры, возможно, узнать, применив формулу: v = 331 +0,6t, где v - скорость (в м/с), t - температура. Если мы начертим график этой зависимости, то увидим, что он будет линейным, то есть представлять прямую линию.

    И таких практических использований знаний в применении линейной функциональной зависимости можно перечислять долго. Начиная от платы за телефон, длины и роста волос и даже пословиц в литературе. И этот список можно продолжать до бесконечности.

    Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

    А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений